NEW | Buy the print edition Issues Topics Store About

CHRIS LILLEY

Ask an expert: Why is CSS.
..the way it is?

A technical director of the W3C's interaction domain unpacks the

histories and mysteries.

As a technical director at the World Wide Web Consortium (W3C), I often
give talks about CSS’s great features and capabilities. But from time to
time, I get questions about the bad parts. Why does CSS have feature X,
when feature Y does all that and more? Why is feature Z so hard to use?
Basically, “What was the CSS group thinking?”

CSS debuted way back in 1994, when web browsers were a very new,
relatively undeveloped technology. People were excited just to see
documents that lived on other computers across the world—and not just
in plain text, but with headings and lists, too! Adding finer control over

presentation was mostly seen as a secondary goal.

The two browsers then in common use, Internet Explorer and Netscape

Navigator, had totally different Document Object Models, and there was

widespread disagreement over where to add presentational control: add
a few attributes to the HTML, change the styling through script, or, the
least popular option, create an entirely different presentation language.
This last option was seen as too academic for a web that was expanding

beyond universities to the general public.

As the unfashionable option, it was important to CSS’s success that it be
seen as easy and straightforward—a small addition, really, to what was
mostly networking code. A more feature-rich proposal may well have
failed at the first hurdle: If no one implemented it, then CSS would have

no impact on the rapidly evolving web.

The question “Why is CSS the way it is?” is a reasonable one. And, having
been involved in CSS since its very first days, I'm (sometimes painfully)
aware of the answers. Growing slowly and incrementally over

time, CSS has evolved into a full-featured and essential part of the
modern web. But despite our best efforts, frustrating or confusing
features exist, and in all likelihood will continue to be added. So, for
present and future users, it’s useful to know why CSS is the way it is, and

to learn the backstories behind the features I’'m asked about most often.

Basic beginnings

Some of CSS’s earliest features, necessary at the time, caused myriad

problems down the line and actively got in the way of improving CSS.

THE HUMBLE FLOAT

To the modern designer, familiar with flexbox and grid, the
first CSS layout feature, float, is painfully primitive. Move an image all
the way to the left (or right), and the text shows up to the right (or left),

rather than skipping straight past the image and leaving an ugly white

space. That’s it.

Crucially, you can’t easily achieve this effect using HTML tables—at least,
not if you still plan to modify the text—and tables were the main
competitor for enhancing layout. When it was first developed, float had
areal impact on how the page looked and was therefore widely used.
That it offers little additional control and is badly underspecified in even

slightly complex cases was a problem to solve later.

HOSTILE HEX

This “good enough for now” philosophy explains why colors in CSS were
first specified in RGB—already known to be an unintuitive, user-hostile
syntax—even though better systems existed. RGB was understood by
engineers, required no device calibration, and was what you sent to the
graphics driver. Small details like consistency, usability, and ease of
getting the right color could be solved later. Much, much later, as it

turned out.

The smallest improvements

Once a feature is in place, it’s easier to slightly improve it than to add a

new, better, but completely different feature that does the same thing.

LIST MARKERS

This explains, for example, why list markers were initially specified

in CSS by expanding the role of float. (The list marker was floated left so
the list item text wrapped around it to the right.) That effort was
abandoned and replaced by the 1list-style-position property, whose
definition currently has the following, not very confidence-inspiring

inline issue: “This is handwavey nonsense from CSS2, and needs a

real definition.”

TINY IMPROVEMENTS TO COLOR

This also explains why the first two improvements to specifying color
in CSS—a named-color system and a hue-wheel, polar notation—were
adopted over much better, but more complicated, systems proposed at
the same time. They were slight improvements, seen as easy

to implement.

MYSTERIOUS COLOR NAMES

» e

What do you imagine “vivid deep blue,” “very dark green,” or “pale light
reddish-orange” to look like? These are examples from the Color Naming
System (CNS) described by Toby Berk and coauthors in a 1982 paper
published by IEEE Computer Graphics and Applications, which I

proposed CSS adopt in 1996.

Contrast these with “orchid,” “gainsboro,” or “burlywood.” These are
examples of X11 colors, which were added to SVG in 2000 and

then to CSS in 2003. It isn’t possible to modify or refine these color names
with adjectives, as it is in CNS; you basically need to memorize, or refer

to, the entire list.

So what happened? In the early days, there was resistance to
standardizing a big color list: Memory was small and expensive,
especially on the newly emerging handheld devices that preceded
smartphones. Then, by the time such resistance had faded, the Unix
workstation X11 names had spread to the more popular Mac

and PC implementations. Lastly, the full algorithm that made it possible
to convert CNS colors to sRGB wasn’t published in the original paper, and
my efforts to reach out to the original authors were unsuccessful. The

idea lost momentum, and we chose the path of least resistance instead.

HUE WHEELS

The concept of a circular, rainbow arrangement of colors has been
familiar to artists for centuries. Extending this wheel to black, gray, and
white in the center with progressively more vivid colors toward the edge
has a similarly long history. Less frequent is when a color-wheel designer
takes care to evenly space the colors around the wheel so they don’t seem
bunched up in any one area. The Munsell Book of Color, published in

1929, was the first to succeed in this respect.

In 1976, the International Commission on Illumination (or CIE, an
abbreviation for Commission internationale de I’éclairage, its French
name) standardized a three-dimensional representation of color derived
from physical measurement, corresponding to how the human eye sees
color. In this system, called CIELAB, the distance between two colors is
directly related to how different they appear visually, a concept

termed “perceptual uniformity.” A hue-wheel derivative of

this, CIE LCH (for Lightness, Chroma, Hue), combined the usability
advantages of the Munsell color system with scientific rigor and direct

physical measurement of any colored object.

Unfortunately, when the CSS Working Group added a hue wheel system
to CSS in 2002, the greatly inferior HSL (for Hue, Saturation, Lightness)
system, which lacked the CIE LCH’s perceptual uniformity, was adopted
instead. In it, bright yellow and dark blue have the same HSL lightness,
and hues are bunched up in certain places but widely spaced elsewhere.
Adoption was driven by a desire to have some sort of hue wheel system,
the lack of dependence on display calibration, and math that made it
somewhat simpler to convert HSL values to RGB than CIE LCH. Since it
was already widely used in other programs, HSL seemed like it would be
an easy addition to CSS, but the disadvantages—non-perceptual
uniformity chief among them—would hit hard when developers

used CSS preprocessors to implement design systems in CSS. (This is also

why CSS Color 5 was started, and why two of the four coauthors are

design systems specialists.)

Insufficient review

Sometimes a feature is added to a CSS draft and no one has the time or
the expertise to review it. Usually, troublesome features are caught by
test implementations during the Candidate Recommendation (CR) phase

of specification development. But not always.

MYSTERIOUS RANGES

One notable example is the syntax for unicode-range, which is used to
indicate ranges of characters in a font that you don’t want used. This was
added to CSS2 following a request from the Unicode Consortium in May
1997. At the time, Unicode was brand new and somewhat experimental.
To distinguish Unicodes from the more common ASCII or Latin-1 codes,
people used the prefix U+. (No one does this anymore.) I came up with a
compact syntax the following month to represent the ranges; it assumed
you had a copy of the Unicode specification to refer to and were

comfortable with hex notation and wildcards.

1y

0:1'.‘0.1
' XTI, |
e — "."‘“\ /" “1
73'\‘»"‘ \\'
fanp-o-amm

AN
1“1 I

s
¥y

FROM ISSUE 5

Unplain text

A primer on text shaping and rendering non-Latin text in the shadow of an ASCII-

dominated world.

This example specifies to only use the font for Japanese:

unicode-range: U+A5, U+4EQ0-9FFF, U+30??, U+FFOO-FF9F;
/* yen, kanji, hiragana, katakana */

If you think this syntax is bad—and it is—consider that the only

alternative proposal was a complete bitmap of Unicode 1.1:

unicode-range: 0x02037FBC4571000003100C000000100010000300BDF74

After a week of mailing list discussion and no suggestions for

improvement, the consensus was that my syntax was good enough for
now. (Ha!) We added it to the specification, thinking we could always
improve it later. (This was some years before CR testing became a thing.)

After 23 years, we're still using it, and I’'m still apologizing for it.

The actual implementation testing occurred between 2013 and 2018

with CSS Fonts Level 3, which ironed out a lot of the bugs and precisely
defined the corner cases. Even so, this syntax is unwieldy, especially for
languages with discontinuous ranges, such as Chinese. It requires special
handling in the CSS parser, and it puts the burden on the style sheet
author to keep track of revisions to the Unicode specification as more

characters are added. Not great.

Looked good enough at the time

Some suggestions are reviewed, seem okay, and get implemented. Years

later, their shortcomings become increasingly obvious.

DODGY DISPLAY

A prime example is the display property. This is mainly used to specify
whether a particular element should render like a paragraph, with new
lines before and after (block), or like a run of styled text as part of a
paragraph (inline). The first draft of CSS in August 1996 also

added none, which disabled rendering entirely. More values have been

added since then.

Though scripting languages and dynamic modification had not yet
become common, it’s easy to see the problem in retrospect. Suppose I use
script to set the value to none to hide it. Later, I want to unhide it, but the

original value of the property is now lost.

Also, newer values like inline-block have made it clear that this
property is doing two things: changing what the element looks like to
other elements surrounding it (inline-block looks just like inline on
the outside), and changing what the element looks like to its children
(inline-block looks just like block on the inside). Not to mention the

hide/don’t hide behavior I mentioned earlier.

Fortunately, CSS has a mechanism to handle this grouping of related
properties: shorthands. A shorthand is a way to set the value of multiple
longhand values at once. So in the future, CSS could add three longhand
properties called, say, display-outside, display-inside, and display-
hiding; the latter would take the place of the none and not-none values.
The existing display property would then become a shorthand that sets

the value of the three longhands.

FUNNY FONTS

Not that shorthand properties are a silver bullet. One of the original
shorthand properties from the first CSS proposal, font, was meant to
emulate “a traditional typographic shorthand notation to set multiple

properties related to fonts.” Take, for example:

font: 700 12pt/14pt "Times New Roman"

Here, 700 is the font weight on a 0 to 999 scale, 12pt is the font size, 14pt
is the leading (interline size), and the string in quotes is the font family
name. The weight can be omitted, defaulting to 400. It would’ve been
nice to allow the size to be omitted as well, but we couldn’t do that. Why?

Because, unfortunately, CSS allowed the quoting to be omitted. Compare:

font: 50 Shades of Gray
with:

font-weight: 50;
font-family: Shades of Gray

or, alternatively:

font-family: 50 Shades of Gray

Because the family name happened to start with a number, it would have
introduced ambiguity to the shorthand.

A glimmer of hope

Though I've highlighted many of CSS’s shortcomings, don’t feel
despondent. I have cheering news to lift the spirits (at least a little). First,
after over 20 years of being ignored, LCH in CSS Color 4 is being
implemented by Apple in Safari right now. There are also moves to add it
to Chrome. Color modification functions, which rely on a perceptually
uniform color space, will finally be able to take advantage

of LCH. Second, the CSS Working Group is currently designing a proposal
to add Unicode script codes as well as numbers for unicode-range. It will
allow developers to write easy-to-remember and maintenance-

free CSS like unicode-range: Japanese. Third, all CSS Working Group

specifications and their related issues have now been maintained on

GitHub for over five years. Any interested member of the public can
contribute to solving issues or pointing out errors. Take it from an expert:

You can help!

ABOUT THE AUTHOR

Chris Lilley is a technical director at the World Wide Web Consortium
working on CSS, web audio, web fonts, and SVG.

@svgeesus

TOPICS
Ask an Expert

Learn Something New

Buy the
print edition

Visit the Increment Store

to purchase print issues.

STORE >

13 | Frontend

RAMSEY NASSER

A frontend stack for video games

Tales of a powerful and expressive game engine built entirely from open-source,

web-based technologies.

13 | Frontend

IPSITA AGARWAL‘

Case study: Web components for screen readers

How Slack changed the way it designs accessible frontend components.

13 | Frontend

CHRIS STOKEL-WALKER‘

The rise of React

On the social, cultural, and technological impacts of the increasingly ubiquitous

‘ELIZABETH MINKEL

A frontend of our own

The true story of what happened when a group of fanfiction writers built a Hugo

award-winning—and resolutely, delightfully amateur—web publishing platform.

13 | Frontend

IPSITA AGARWAL

Case study: Mobile payments in India

How Google designed an app for users from big cities to rural areas on devices old

and new.

Development

MATT KLEIN

Ask an expert: Has adopting microservice
architecture changed the way we develop
software?

We asked Matt Klein, Senior Software Engineer at Lyft.

‘DAVID J. LUMB‘

Inside the complex world of life-saving software

Nuclear power plants. Medical devices. Airplanes. Self-driving cars. Developing

saftwaned o seifetyicritieal projects takes documentation to the next level.

FREDERIK VOLLERT

Ask an expert: What's the best way to begin
software localization?

PhraseApp’s Frederik Vollert provides an overview of the essentials.

10 | Testing

IPSITA AGARWAL‘

A test of meaning

For AARP, AutoCAD, Google, and Pinterest, qualitative research can include

everything from focus groups to hand-drawn maps.

Planning

Containers
Reliability
Remote
Frontend
Software Architecture
Teams Testing
Open Source
Internationalization
Security

Documentation

Programming Languages

Energy & Environment

Development

Cloud On-Call

